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ABSTRACT. Gravitational lensing arises from the curvature of spacetime, which
itself is a result of the presence of energy and momentum a la Einstein’s Equa-
tion. Einstein’s General Theory of Relativity predicts that inhomogeneous
distribution of matter deflects a nearby photon’s trajectory. We derive the re-
sult that Einstein himself first arrived at. Nowadays, the study of gravitational
lensing’s weakest regime is maturing rapidly as a result of the advanced state
of land- and space-based imaging technology. Weak lensing provides one of the
first direct measures of dark matter in the sky. This article reviews the theory
and conventions of weak gravitational lensing, summarizes three prominent
methods for detecting it, and presents some initial data from our own weak
lensing studies in the Great Observatories Origins Deep Survey (GOODS) im-
ages. This review is intended for advanced undergraduates in physics or closely
related fields.

1. REVIEW OF THE THEORY

Einstein’s General Theory of Relativity fully describes the deflection of light by
a gravitational potential. We call this gravitational lensing because of the natural
analogy to classical lensing systems. However, most of nature’s gravitational lenses
are far from the idealized lenses we are familiar with. Light behaves in a gravi-
tational potential gradient the way it would when passing through substances of
varying indeces of refraction. The analogy, in fact, is made even closer when we
identify an effective index of refraction in the case of gravity.

1.1. A General Relativistic Derivation of the Deflection of Light by Grav-
ity. The General Relativistic analogy to Poisson’s equation is called the Einstein
Equation, written elegantly in a second order tensor equation as

G = 87GT. (1.1)

The lefthand side bears close resemblance to the second order derivative on the
classical potential field ® from Newton’s theory. In fact, G represents a manner of
second order derivatives on the spacetime metric, which is the corresponding “field”
in GR. The metric is essentially the coordinate system we use to label or index
events in space and time. As we know, a second order derivative tells us something
about the curvature of its operand. Likewise, G tells us about the curvature of the
metric, which we can naturally interpret as the curvature of spacetime itself.

The righthand side of (1.1) contains the 47G from the Poisson Eqation but with
an extra factor of two. G here is the Newtonian gravitational constant, as it must
be if (1.1) is to reduce to the classical theory in the nonrelativistic limits. And
finally, T is the energy-momentum tensor from classical theory. Whereas the mass
density p is the source of the gravitational field in Newton’s theory, T is the source
of spacetime curvature in General Relativity. Amazingly, the source of spacetime
curvature, which gives rise to gravitation, is not only mass but momentum and
energy as well. T contains this information.
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If we assume speeds v < ¢, where c¢ is the speed of light, and weak energy-
momentum disribution® , then we can use classical perturbative methods to approx-
imate the Einstein Equation. The resulting field equation is the Poisson Equation,
as it must be.

Given spherical symmetry in four dimensional spacetime, Schwarzschild’s metric
solves Einstein’s Equation generally. Four dimensional spherical symmetry also
gives rise to two useful Killing vectors, which reflect the symmetries of the metric.
These Killing vectors are

E=(1 0 0 0), (1.2)
n=(0 0 0 1). (1.3)

¢ arises from the time independence of the Schwarzschild metric, and 5 arises from
the azimuthal angle ¢ independence. In units of ¢ = G = 1, or geometrized units,
the conserved quantities for any geodesic in Schwarzschild geometry are

2M Y\ dt
= ¢u=(1-")2 14
. o5 ,do
=n-u=r>sin?— 1.
l=n-u=r°sin Hd)\, (1.5)

where ) is some affine parameter for the body’s trajectory in spacetime and u is
the body’s four-velocity in its general form. We may restrict our analysis to the
6 = m/2 plane because the body will remain there for unperturbed motion. e is the
GR analog of the total energy E for orbital motion in Newtonian dynamics, and
[ is the analog of the Newtonian angular momentum, both conserved quantities in
Newtonian orbital motion.
We require for a photon’s null geodesic that

_ dz* dx¥
= Iy
This is by construct of the metric. In the present case we only have pu, v = {t,r, ¢},
the metric is diagonal, and we can plug in from (1.4) and (1.5) to get

(B (8 (- 2) () e () e e

We can eliminate the derivatives from the first and last terms on the lefthand side
in favor of the constants e and [ using (1.4) and (1.5). This gives

20\ oM\t fdr\? 2
—(1-== 2y (1-2= — -, 1.
p-5) e () (@) e 0
We can put this in the simple and illuminating form
2 1 (dr\® 1 2M
— == (= —(1-2=). 1.
2 12<d/\) +r2< 7') (19)

It turns out that |l/e| reduces to something useful. Dividing (1.5) by (1.4) at
r >>2MG/c?, we have

u-u=g,utu’ =0. (1.6)

l 2do

-~ r == 1.10

e " dt ( )
At large r we have ¢ = b/r, where b is the impact parameter, or the lateral distance

between the photon’s trajectory and the location of the source mass. We also have

IWeak energy-momentum distribution is itself defined by velocities well below the speed of
light and also by

where b is the impact parameter of the light ray, defined as the lateral distance of the light ray’s
trajectory to the source.
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dr/dt &~ —c because the velocity of the photon at large r is directed almost entirely
radially inward. This gives

d¢ dedr d
dt  drdt 1?2 (1.11)
This yields finally
l
| =b. 1.12
: (112)

In light of this result and the definition of the effective potential for photon

orbits,
1 2M
Ver(r) = o} (1 - T) ’ (1.13)
we now have greater insight on (1.9) if we write it as
11 (dr\?
b_2 = l_2 (a) + ‘/eﬁ'- (114)

We are interested in the angle through which the source mass deflects the photon,
which approaches from infinity with impact parameter b and arrives at our location,
also at infinity. We can get this by finding an expression for dr/d¢ and integrating
from the radius of closest approach to infinity?. We can find the expression we want
by eliminating 1/1? from (1.14) using (1.5) and solving for our desired quantity. This
gives

1/2
g_; = 42 (bl? - veﬁ) , (1.15)
where the sign indicates whether the photon is approaching or retreating from the
source mass. Because the trajectory is symmetric about the axis through the radius
of closest approach rg, we can find our angle by solving integrating

©dqrf1 1 oM\ 12
soca [TE[L LB
o T2 12 r

We can determine the radius of closest approach using (1.14) by noting that the
derivative vanishes when the photon reaches this point, yielding 1/b2 = Veg(ro). 7o
is then a root of the equation

1 1 2M
—=—=(1-—1. 1.17
b2 2 ( r ) (1.17)

We now introduce a natural change of variable
u=>b/r, (1.18)

which gives a new integral
uo aM \17'?
Agp = / du [1 —u? (1 - Tu)] (1.19)
0

—1/2

=2 /Ouo du (1 - %u) o [(1 - %u) - - u2‘| (1.20)

ug here is a root of the bracketed expression. We have written the latter expression
in this form because we wish to expand the integrand in powers of 2M /b, which we
define to be small. The result is
o 1+ (M/b)u
Ap=2 du .
¢ /0 [+ @M/byu — 272

(1.21)

2Because the orbit of the photon is symmetric about the line of closest approach, there is no
danger of ambiguity as to which r = oo we are talking about.
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ug is still a root of the bracketed expression. This integral evaluates to

4M
Ap=m+ 5 (1.22)
It is convenient to find the angle of deflection d¢p = A¢p — m. After replacing
¢, G # 1, this gives us our final result for the deflection of a photon outside a

spherically symmetric mass,

(1.23)

This result is twice that rederived in 1911 by Einstein himself from the Newtonian
theory. The discrepancy results from the postulate that spacetime is curved.

1.2. Weak Lensing Conventions. Gravitational lensing in its weak regime has
become a viable field of study of its own right in the last couple decades. To become
involved in this study, one must become familiar with the conventions that have
come into use. To begin with we write down what every undergraduate knows
already from courses on electrostatics and classical gravity: Poisson’s Equation.

V2% = 47Gp, (1.24)

where we identify the Laplacian’s argument ® as the Newtonian gravitational po-
tential, G as Newton’s gravitational constant, and p as the three dimensional mass
density. With the usual physical constraints on @, e.g., continuity and identification
of a zero value somewhere, this equation uniquely determines the potential given a
mass distribution.

We can collapse one of the dimensions of this equation by projecting all quantities
onto the xy-plane. Projection is an integration, and we define the two dimensional
projected potential and mass density as

T = /<I>dz, (1.25)
Y= /pdz, (1.26)

respectively. One may visualize this operation as taking some three dimensional
mass distribution, summing the mass densities along all lines of constant x and y,
and placing the summed mass at z = 0.

Note that the resultant ¥ is not simply z-independent. In other words, this is
a sheet mass and not some mass density field that extends in three dimensions
but symmetrically in z. Therefore, in introducing the two dimensional Poisson
Equation,

V¥ = 47GY, (1.27)
we imply the two dimensional Laplacian, V2 = 9% + 85. Afterall, this equation
results when we integrate the z variable out altogether. This point is subtle. In
electrostatics, we sometimes seek the three dimensional electric potential given a
two dimensional sheet of charge. Naturally, we may do so in gravito-statics as
well, but that is not what we are doing here. Instead, we are concerned with the
gravitational potential only in the plane of the sheet mass and after projection.

We can define a critical sheet mass density as
_ 2 D
¢ 471'G DdDds ’

where the D’s are angular diameter distances®. ¥, allows us to define a dimension-
less sheet mass density

(1.28)

k=3/%. (1.29)

3see Hogg 2000 for a description of this measure of distance and Kuijken 2003 for motivation
for ..
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and a modified two dimensional projected gravitational potential
v =9/2rGE,, (1.30)
the latter of which yields a dimensionless quantity when operated on by the two
dimensional Laplacian. This is evident in our new Poisson Equation
V) = k. (1.31)

Again, we arrive at this eqation by (1) collapsing a dimension and (2) making the
equation dimensionless by dividing by critical quantities.
We can now define the Jacobian matrix

Aij = 05 — V.45, (1.32)

where the comma denotes partial differentiation with respect to the ith and jth
coordinate and i, j = {1,2}. Explicitly,

1— _
A= ( Sl _‘ﬁ;;) (1.33)
_ (1 = [3(W11 + ¥ 22) + 5 (¥,11 — ¥,22)] =112 )
— 21 1—[2(11 +922) — (11 — ¥ ,22)]
(1.34)
1— g — _
N ( f’h " 1- K’Yi 71) ’ (1.35)
Clearly we have used
K=V =111+ (1.36)
and defined
m= %(Z/J,n —,22), Y2 = a2 =P, (1.37)

where the latter equality holds from Clairaut’s Theorem. It turns out that 7; are
the components of the shear of an image and & is equal to the convergence.
Conventially, we define A~! as the magnification matrix with the property that

1 .
M=detA'=——=[1-k)?2—~]-"]"". L.
det Al = —— = [(1=K)* =7 = 3] (139)
M is called the magnification. Weak gravitational lensing is defined by the con-
ditions k < 1 and |vy;| <« 1. We find the first order binomial expansion of M to
be
Mwy =1+ 2k. (139)

2. METHODS IN WEAK LENSING DETECTION

To detect weak lensing in images, three methods have become prominent in re-
cent years. They resemble each other closely in that they all involve measuring
galaxy shapes, deconvolving and correcting for distortion, and statistically corre-
lating the corrected galaxy shapes. We present here a detailed summary of the
KSB method, and more concise reviews of the RRG and Shapelets methods of
weak lensing detection.

2.1. KSB. Kaiser, Squires and Broadhurst [KSB] (hereafter KSB) put forth the
simplest of the three methods summarized here. Their algorithm consists of four
essential steps. Given an image they propose that we

(1) find the sources,
(2) measure the source shapes,
(3) measure the Point Spread Function (PSF),
(4)

3
4) and estimate the shear.
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2.1.1. Find the sources. First we find the galaxies and stars in our image. To
locate objects KSB suggest simply detecting peaks in the smoothed image. The
smoothing radii should be made to vary in order to maximize the significance v
at each peak, where v is defined as the signal-to-noise ratio, v = S/N. In fact,
the smoothing radius that maximizes the significance at a peak can also provide a
good preliminary estimate of the object extent o. This is especially true for sources
with Gaussian intensity profiles, but KSB shows qualitatively that this is generally
useful nonetheless.

After peaks are detected and their optimum significances are determined from
variable smoothing radii, a large gap becomes evident between real sources and
spurious source detections attributable to noise peaks. We identify this gap and
eliminate all sources with significance below this level. We may also find “composite
sources,” which are sources that overlap to some extent. We may easily detect
these and choose to throw them out in order to make clean subsequent shape
measurements.

2.1.2. Measure the source shapes. After we locate the peaks and determine whether
each is a star or a galaxy, we then measure the shape of each galaxy. KSB are
interested in only a few shape parameters. They use what Blanford et al. 1991 [1]
call the polarization e = (e1, e3). e is a normalized measure of the ellipticity of an
object. Namely, e; quantifies the amount of elongation in the horizontal direction
and es the elongation at 45°. Each component can take on values between —1 and
1, where a positive value represents stretch and a negative value represents squash.
For example, a horizontal ellipse has es = 0 and 0 < e; < 1, and a vertical lying
ellipse still has e; = 0 but —1 < e; < 0. An ellipse oriented at +45° from the
horizontal has e; =0 and 0 < e5 < 1, and an ellipse at an angle of —45° hase; =0
and —1 < ey < 0.

From this description and our present knowledge of ellipses, some features of the
polarization become obvious. If we define the angle of inclination of an ellipse as
a, we can show that e is symmetric on rotation by 180°, or e(a) = e(a + ). This
reflects the fact that putting a negative sign in front of an ellipticity simply rotates
it by 90°, and is a feature of any spin two quantity.

Ellipticity interests us because we may postulate that, in the absence of weak
lensing, a local ensemble of galaxies has randomly distributed polarizations. This
appears as a null average over a population. Weak lensing correlates polarizations
locally in an image, so ideally the only error in our lensing measurements are
statistical and thus quantifiable. However, we find that other effects such as an
anisotropic PSF also correlate object polarizations on the same order of magnitude
as weak lensing. We discuss this in §2.1.3.

Before arriving at the polarization we first find the source barycenter 8°. This is
defined to be the location of the weighted first order moment or “center of intensity”
of the source,

I _ [d°0'6W((6' —6°)*/0)i(6)
I [d2oW (@ — 6o

(2.1)

where 6' are the original coordinates, normally with origin at some corner of the
image, (6) is the intensity at location 6 in the image of the source, and W is some
square integrable weight function with extent o. W is normally chosen to be a
Gaussian. If we introduce a change of coordinates 6; = 8; — 65 such that the new,
unprimed origin is located at 65, then we can arrive at a new, useful expression by
plugging into (2.1),

0= / &20/(6, — 65YW (0 — 6°)2 Jo2)i(6"). (2.2)
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We can iteratively solve (2.2) to find 65 and to optimize o, which is taken to be the
extent of the source following Hoekstra et al. 1998 [HFKS].

Of the weighted, low order multipole moments in the unprimed coordinate sys-
tem,

I= / 6W (6/0)i(6), (2.3)
I = / d?06; W (8/5%)i(8) = 0, (2.4)
I; = / 42060, (6/52)i(8), (2.5)

we have only to find the monopole and quadrupole terms*. We may wish to nor-
malize the quadrupole moment as

Jij = Iz'j/I, (29)

but we shall find this unnecessary at the moment.
Finally, we calculate the source polarizations as

‘61 = (I1 — I2)/T, ex = 2I12/T,

(2.10)

where the trace T = I11 + I»s.

It is crucial to weight the moments in the KSB method with well defined func-
tions. This will become evident in §2.1.3 when we show KSB’s results for PSF
deconvulution. In a word, the deconvolution can be intractable without a well
defined, analytic weight. Figure 1 shows histograms our own polarization measure-
ments of sources in one of the GOODS images. These are yet unweighted by an
analytical function, and this represents our next step in measuring shapes.

2.1.3. Measure the PSF. After we locate sources and measure their shapes, we
measure and correct for the PSF. Typically we measure the PSF by locating stars
in the field, measuring their polarizations as in §2.1.2, and interpolating between
the stars using low order polynomial approximations. First we define the relation
between the polarization and the PSF.

The anisotropic part of the PSF perturbs source polarization to first order as

e = el + dei™ (2.11a)

=e] + P;'p;. (2.11b)

e; are the pure gravitationally lensed polarizations, that is, those polarizations
before the PSF takes effect. KSB dub P5™ the “smear polarizability” tensor, as
it tells us to what extent the anisotropic component of the PSF affects the source
polarization to linear order. p; are the polarization components of the anisotropic

component of the PSF. We first define the anisotropic part p of the PSF P as the
kernel in the convolution of the isotropic part P'° in the relation

P() = / d*6'p(6") P (6 — 9"). (2.12)
4n practice, these integrals become sums,
1= w(0/a?)i(0), (2.6)
i,jES
=Y 60;W(8/a%)i(6) =0, (2.7)
i,j€S
Iij = Y 0:0;W(0/0”)i(0). (2.8)
i,j€S

where 8; are expressed here in pixels. Hence Af; = 1 here. S denotes some subset of the image,
normally a circular aperture a few times the extent of the source.
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FI1GuRrE 1. Histograms of the polarization magnitudes in GOODS
HDF-N, version 1.0, tile 33, i-band. There are about 8000 sources
in this image. Clockwise from the top left: (1) Polarizations of
the raw source images with circular apertures. The sources appear
overwhelmingly round, signified by a small e. (2) Polarization of
the same sources after setting all pixels below the noise rms to
zero. The mean average polarization magnitude increases, so this
scheme effectively amplifies the polarization signal, meaning their
ellipticities are more evident. (3) Polarization of the sources from
(2), but with all pixels not contiguous with the barycenter set
to zero. The galaxies appear highly elliptical with this kind of
measurement. However, the effect of the PSF on the shapes is also
amplified.

We take the PSF and both its compoments to be normalized to unity, which makes
for well behaved quadrupole moments p;; of p. As for P, KSB find

1

Pyt =7 (Xij — e*mi) (2.13)
. W W
' oW’ w"
z; = /d201(0)17,~(0) ( = + 62 g, ) , (2.15)
m= 0% bl 0%, N2 = 20102, (216)

where §;; is the Kronecker delta and the prime denotes differentiation with respect
to 62.

The given quantities in these equations are the image ¢, the weight W. The
measurable quantities are the weight extent o, e??®, and the PSF anisotropy polar-
ization p;. Because gravitational lensing doesn’t affect stars due to their largeness
and proximity to Earth, and because stars are expected to be circular, any deviation
from zero polarization arise only from PSF anisotropy. Using equation (2.11) for

stars, which we denote with * we determine p; by measuring a star’s polarization,
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calculating its smear polarizability, and plugging into

pi = (-Pi’;,sm)fle’;,obs‘ (217)
The final step in PSF deconvolution is to interpolate p; across the field with a low
order polynomial. Once this is done, we can determine how the PSF affects the
source polarizations and correct for this to linear order.

2.1.4. Estimate the shear. Once we correct for the effects of an anisotropic PSF,
we are left with the pure gravitationally lensed source polarizations e, related to
their hypothetical pre-lensed selves €9 by

e] = e+ de] (2.18a)
= e} + Pv;. (2.18b)

All quantities are defined in direct analogy to those of §2.1.3, except here we use y
to denote shear. For example, P? is the “shear polarizability” tensor that tells us
the degree to which shear can affect a given source’s polarization.

The expectation value of the true source polarizations (e?) over a population
is 0, so (2.18) provides an estimate of the shear v in the image. In other words,
we first choose some scale over which to average the corrected source ellipticities.
In doing so we seek to include as many galaxies as possible in order to minimize
counting errors while also maximizing the number of bins in the field. Finally, we
solve for the shear after setting (e?) = 0.

In weak lensing analysis we wish to determine the convergence x from (1.30),
which is equal to the dimensionless sheet mass density in the field. The isotropic
component of the PSF also affects a convergence in the image, which we must
deconvolve beforehand. KSB do not provide the means to do so, so we must look
elsewhere.

2.2. RRG. Rhodes, Refregier, and Groth [RRG] build on the KSB method, seeking
to improve it’s accuracy. As in the KSB method, they first measure the weighted,
low order multipole moments of the sources and of the PSF. RRG also include one
higher order term, namely the fourth order moment

T = / BOW (62/52)i(6). (2.19)

Also in contrast with the KSB method, RRG perform all calculations using the
multipole moments themselves rather than the ellipticities. This may reduce the
number of calculations, but at the same time RRG include many new steps in the
source shape correction.

RRG first measure the distortion the camera itself causes in an image. How
to proceed in this step depends on the particular instrument at hand. RRG use
HST as an example, building on results arrived at by others who found HST camera
distortions by inspecting images highly dense with stars. They find the perturbation
this causes for the source polarizations to be less than a percent on average. This
is small but nonetheless on the order of the shear signal we seek in weak lensing.

Next, RRG measure the weighted source multipole moments as already discussed.
They parse the galaxy and the star sources, using the latter to determine the PSF.
In the process of finding the PSF moments, they correct for the camera distortion,
which they also do for the source moments.

Third, RRG correct for the anisotropic component of the PSF, then the isotropic
component. The anisotropic correction is consistent with the KSB method, but
RRG generalize by deriving an expression that corrects the fourth order terms as
well.

Finally, after correcting for all distorting and convoluting effects, RRG arrive at
the shear exactly as in §2.1.4.
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FIGURE 2. The smoothed density of sources found by Source Ex-
tractor in the GOODS HDF-N. This map clearly exhibits the ef-
fects of drizzling. The edges, where the fewest layers of stacked
images are, contain considerable overdensities (red).

2.3. Shapelets. Refregier and Bacon [4] develop an entirely different approach
to finding the weak lensing shear. At the heart of their method is the quantum
harmonic oscillator basis—a complete, orthonormal set of basis functions consisting
of Gaussian weighted Hermite polynomials.

In the Shapelets method we first decompose each source image into the coeffi-
cients of the two dimensional basis, which is essentially one integration per coeffi-
cient. Asin the other two methods discussed, we parse stars and galaxies. Here, we
project the stellar shapes onto the basis functions, attribute any deviations from
circular shapes to the PSF, and interpolate the PSF across the field with low order
polynomials. We then deconvolve the galaxy shapes using what Refregier and Ba-
con term the convolution tensor. To low order, deconvolution of the image at hand
amounts to simple matrix operations involving the PSF kernel, the convolution
tensor, and the source image itself.

Finally, we use the assumption, as before, that the expectation value of an ensem-
ble of galaxy polarizations is zero to estimate the shear. Shear estimation reduces
to matrix operations on the coefficients of each source.

3. OuR FINDINGS

We seek a weak lensing signal in the Great Observatories Origins Deep Survey,
or GOODS. Our preliminary research proves educational while the data reveal the
highly senstive nature of weak lensing measurements.

3.1. GOODS. GOODS consists of images taken by the Hubble Space Telescope
in its “Deep Field North” (HDF-N), and the Chandra X-ray Observatory in its
“Deep Field South” (CDF-S). These fields contain a minimal number of nearby
obscurations such as stars in our own galaxy and are thus ideal for high redshift
observation. GOOQDS is quite deep: some have reported galaxies in the field at
redshift of six or so. On the other hand, GOODS is not particularly wide, as it
covers about 320 arcmin? in its two disjoint fields. The combination of minimal
stellar sources and a narrow field is a significant tradeoff to depth in light of weak
lensing analysis.
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FIGURE 3. A shear map of the raw data. The shear can be decom-
posed into E and B modes, which provide a measure of the mass
density and the systematic error in the field, respectively.

A second trade-off is GOODS’s scheme of improving the resolution of the im-
ages. In their second data release, version 1.0, GOODS stack and drizzle thou-
sands of raw images to construct a final mosaic. This has the potential to af-
fect highly anisotropic errors in noise and galaxy shapes from position to position.
The benefit, however, is improved resolution of 0.03 arcsec/pixel over the original
0.05 arcsec/pixel of the version 0.5 data. Our preliminary shape measurements and
shear estimates confirm the presence of sizeable systematic error.

3.2. Shape Measurements, Shear Estimates. We have C++ software that
calculates source polarizations in the GOODS data. We do this by measuring
the quadrupole moments of each source. In preparing each source we apply circular
apertures, which minimizes polarization biasing at +45° to the horizontal. We have
experimented with a couple techniques to eliminate noise and mask neighboring
sources. A comparison of some of these schemes is illustrated in Figure 1. This kind
of experimentation in shape measurement has proven educational, but convolution
with a well defined kernel such as a Gaussian will be essential to our weak lensing
search.

In order to open our weak lensing data pipeline we have estimated the shear in
the HDF-N, i-band as

oy = 2, 3.1)
which is simply Equation (2.18) for the impractical case of unity weight. The
resultant shear map appears in Figure 3.2. Theory predicts weak lensing shear to
be on the order of a few percent. The shear amplitude appearing in Figure 3.2
is considerably greater than the expected value. We attribute this high signal to
systematic error in the field, which our shape measurement scheme have effectively
amplified. This is illustrated in our decomposition of the shear into E and B modes,
as suggested by Kamionkowsky et al. 1998 [3].

The E and B modes bring to light two aspects of the shear. First, the E mode
of the shear is equal to the convergence, which in the limit of weak lensing is
itself equal to the unitless sheet mass density x from (1.30). Therefore, if we have
performed effective image restoration and have a high enough density of sources, we
then have a good estimate of the mass density in the field up to a constant. From
this we can directly calculate the power spectrum of mass density perturbation and
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FIGURE 4. Top: An E mode map. This is equivalent to a nor-
malized convergence map on the field, which, in the limit of weak
gravitational lensing, equals the normalized and projected mass
distribution. Bottom: A B mode, or curl, map. Theoretically,
gravitational lensing gives rise only to E modes in the curl. B
mode contributions from lensing are null or negligible. On the
other hand, we assume that systematic error contributes to E and
B modes equally. Because the above B mode map has amplitude
on the order of our E mode map, we cannot trust that our E mode
map accurately reflects the projected mass density in the sky.

its large scale normalization factor cg—fundamental quantities in cosmology. The
top panel of Figure 4 shows our own E mode map, calculated from the shear map
of Figure 3.2.

Second, the B mode signal provides a measure of the systematic error. Because
weak lensing causes E modes almost exclusively, we expect B modes to arise only
from camera distortions and PSF. Our B mode map in the bottom panel of Figure 4
exhibits signal amplitude on the order of the corresponding E mode map. Because
of this, we cannot trust that our E mode map accurately reflects the projected mass
density in the GOODS HDF-N. We must continue therefore to fine tune our shape
measurements and to embark on distortion correction and PSF deconvolution.
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3.3. What’s Next. Our immediate next step is to apply a Gaussian weight to
each source, with width o equal to the extent of the source itself. Once we do so we
will have completed our source shape measurement algorithm. Following that is the
crucial process of PSF measurement and deconvolution. This will be particularly
challenging using GOODS because of the low density of nearby stars. We will seek
any such stars as well as explore the use of the HST PSF calculation software Tiny
Tim as a means of finding the GOODS PSF.

ACKNOWLEDGEMENTS

I owe thanks to my advisor, Prof. George F. Smoot, for the opportunity to
study weak lensing in GOODS under his tutelage, and to Dr. Jodi Lamoureux of
Lawrence Berkeley National Laboratory for her guidance throughout the research.
I thank Dr. Henk Hoekstra for some enlightening discussions.

REFERENCES

[1] Blanford, R. D., Saust, A. B., Brainerd, T. G., & Villumsen, J. V. 1991, MNRAS, 251, 600.
[2] Hartle, J., Gravity: An Introduction to Einstein’s General Relativity, 2003, Addison-Wesley.
[HFKS] Hoekstra, H., Franx, M., Kuijken, K., & Squires, G. 1998, ApJ, 504, 636.
[KSB] Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460.
[3] Kamionkowski, M., Babul, A., Cress, C. M., Refregier, A. 1998, MNRAS, 301, 1064.
[4] Refregier, A., & Bacon, D. 2003, MNRAS, 338, 48R.
[RRG] Rhodes, J., Refregier, A., & Groth, E. 2000, ApJ, 536, 79.

DEPARTMENT OF PHYSICS, UNIVERSITY OF CALIFORNIA, BERKELEY
E-mail address: fwh@berkeley.edu
URL: http://www-astro.1lbl.gov/ fwh/



